Homepage

Joints, Geology

JOINTS, GEOLOGY, in geology. All rocks are traversed more or less completely by vertical or highly inclined divisional planes termed joints. Soft rocks, indeed, such as loose sand and uncompacted clay, do not show these planes; but even a soft loam after standing for some time, consolidated by its own weight, will usually be found to have acquired them. Joints vary in sharpness of definition, in the regularity of their perpendicular or horizontal course, in their lateral persistence, in number and in the directions of their intersections. As a rule, they are most sharply defined in proportion to the fineness of grain of the rock. They are often quite invisible, being merely planes of potential weakness, until revealed by the slow disintegrating effects of the weather, which induces fracture along their planes in preference to other directions in the rock; it is along the same planes that a rock breaks most readily under the blow of a hammer. In coarse-textured rocks, on the other hand, joints are apt to show themselves as irregular rents along which the rock has been shattered, so that they present an uneven sinuous course, branching off in different directions. In many rocks they descend vertically at not very unequal distances, so that the spaces between them are marked off into so many wall-like masses. But this symmetry often gives place to a more or less tortuous course with lateral joints in various apparently random directions, more especially where in stratified rocks the beds have diverse lithological characters. A single joint may be traced sometimes for many yards or even for several miles, more particularly when the rock is fine-grained and fairly rigid, as in limestone. Where the texture is coarse and unequal, the joints, though abundant, run into each other in such a way that no one in particular can be identified for so great a distance. The number of joints in a mass of rock varies within wide limits. Among rocks which have undergone little disturbance the joints may be separated from each other by intervals of several yards. In other cases where the terrestrial movement appears to have been considerable, the rocks are so jointed as to have acquired therefrom a fissile character that has almost obliterated their tendency to split along the lines of bedding.

The Cause of Jointing in Rocks. The continual state of movement in the crust of the earth is the primary cause of the majority of joints. It is to the outermost layers of the lithosphere that joints are confined; in what van Hise has described as the " zone of fracture," which he estimates may extend to a depth of 12,000 metres in the case of rigid rocks. Below the zone of fracture, joints cannot be formed, for there the rocks tend to flow rather than break. The rocky crust, as it slowly accommodates itself to the shrinking interior of the earth, is subjected unceasingly to stresses which induce jointing by tension, compression and torsion. Thus joints are produced during the slow cyclical movements of elevation and depression as well as by the more vigorous movements of earthquakes. Tension-joints are the most widely spread ; they are naturally most numerous over areas of upheaval. Compression-joints are generally associated with the more intense movements which have involved shearing, minor-faulting and slaty cleavage. A minor cause of tension-jointing is shrinkage, due either to cooling or to desiccation. The most striking type of jointing is that produced by the cooling of igneous rocks, whereby a regularly columnar structure is developed, often called basaltic structure, such as is found at the Giant's Causeway. This structure is described in connexion with modern volcanic rocks, but it is met with in igneous rocks of all ages. It is as well displayed among the felsitesof the Lower Old Red Sandstone, and the basalts of Carboniferous Limestone age as among the Tertiary lavas of Auvergne and Vivarais. This type of jointing may cause the rock to split up into roughly hexagonal prisms no thicker than a lead pencil; on the other hand, in many dolerites and diorites the prisms are much coarser, having a diameter of 3 ft. or more, and they are more irregular in form ; they may be so long as to extend up the face of a cliff for 300 or 400 ft. A columnar jointing has often been superinduced upon stratified rocks by contact with intrusive igneous masses. Sandstones, shales and coal may be observed in this condition. The columns diverge perpendicularly from the surface of the injected altering substance, so that when the latter is vertical, the columns are horizontal; or when it undulates the columns follow its curvatures. Beautiful examples of this character occur among the coal-seams of Ayrshire. Occasionally a prismatic form of jointing may be observed in unaltered strata ; in this case it is usually among those which have been chemically formed, as in gypsum, where, as noticed by Jukes in the Paris Basin, some beds are divided from top to ' bottom by vertical hexagonal prisms. Desiccation, as shown by the cracks formed in mud when it dries, has probably been instrumental in causing jointing in a limited number of cases among stratified rocks.

Movement along Joint Planes. In some conglomerates the joints may be seen traversing the enclosed pebbles as well as the surrounding matrix ; large Mocks of hard quartz are cut through by them as sharply as if they had been sliced by a lapidary's machine. A similar phenomenon may be observed in flints as they lie embedded in the chalk, and the same joints may be traced continuously through many yards of rock. Such facts show that the agency to which the jointing of rocks was due must have operated with considerable force. Further indication of movement is supplied by the rubbed and striated surfaces of some joints. These surfaces, termed slickensides, have evidently been ground against each other.

Influence of Joints on Water-flow and Scenery. Joints form natural paths for the passage downward and upward of subterranean water and have an important bearing upon water supply. Water obtained directly from highly jointed rock is more liable to become contaminated by surface impurities than that from a more compact rock through which it has had to soak its way ; for this reason many limestones are objected to as sources of potable water. On exposed surfaces joints have great influence in determining the rate and type of weathering. They furnish an effective lodgment for surface water, which, frozen by lowering of temperature, expands into ice and wedges off blocks of the rock; and the more numerous the joints the more rapidly does the action proceed. As they serve, in conjunction with bedding, to divide stratified rocks into large quadrangular blocks, their effect on cliffs and other exposed places is seen in the splintered and dislocated aspect so familiar in mountain scenery. Not infrequently, by directing the initial activity of weathering agents, joints have been responsible for the course taken by large streams as well as for the type of scenery on their banks. In limestones, which succumb readily to the solvent action of water, the joints are liable to be gradually enlarged along the course of the underground waterflow until caves are formed of great size and intricacy.

Infilled Joints. Joints which have been so enlarged by solution are sometimes filled again completely or partially by minerals brought thither in solution by the water traversing the rock ; calcite, barytes and ores of lead and copper may be so deposited. In this way many valuable mineral veins have been formed. Widened joints may also be filled in by detritus from the surface, or, in deep-seated portions of the crust, by heated igneous rock, forced from below along the planes of least resistance. Occasionally even sedimentary rocks may be forced up joints from below, as in the case of the so-called " sandstons dykes."

Practical Utility of Joints. An important feature in the joints of stratified rocks is the direction in which they intersect each other. As the result of observations we learn that they possess two dominant trends, one coincident in a general way with the direction in which the strata are inclined to the horizon, the other running transversely approximately at right angles. The former set is known as dipjoints, because they run with the dip or inclination of the rocks, the latter is termed strike- joints, inasmuch as they conform to the general strike or mean outcrop. It is owing to the existence of this double series of joints that ordinary quarrying operations can be carried on. Large quadrangular blocks can be wedged off that would be shattered if exposed to the risk of blasting. A quarry is usually worked on the dip of the rock, hence strike-joints form clean-cut Joints in Limestone Quarry near Mallow, co. Cork.

(G. V. Du Noyer.)

faces in front of the workmen as they advance. These are known as backs, and the dip-joints which traverse them as cutters. The way in which this double set of joints occurs in a quarry may be seen in the figure, where the parallel lines which traverse the shaded and unshaded faces mark the successive strata. The broad white spaces running along the length of the quarry behind the seated figure are strike-joints or backs, traversed by some highly inclined lines which mark the position of the dip-joints or cutters. The shaded ends looking towards the spectator are cutters from which the rock has been quarried away on one side. In crystalline (igneous) rocks, bedding is absent and very often there is no horizontal jointing to take its place; the joint planes break up the mass more irregularly than in stratified rocks. Granite, for example, is usually traversed by two sets of chief or master-joints cutting each other somewhat obliquely. Their effect is to divide the rock into long quadrangular, rhomboidal, or even polygonal columns. But a third set may often be noticed cutting across the columns, though less continuous and dominant than the others. When these transverse joints are few in number, columns many feet in length can be quarried out entire. Such monoliths have been from early times employed in the construction cf obelisks and pillars. (J. A. H.)

Note - this article incorporates content from Encyclopaedia Britannica, Eleventh Edition, (1910-1911)

About Maximapedia | Privacy Policy | Cookie Policy | GDPR